1(a)(i)	—	B1 B1 2	Correct shape for $-\frac{1}{2}\pi < \theta < \frac{1}{2}\pi$ including maximum in 1st quadrant Correct form at O and no extra sections
(ii)	.3 ~	M1	For integral of $(\sqrt{2} + 2 + \alpha)^2$
(")	Area is $\int \frac{1}{2} r^2 d\theta = \int_{-\frac{3}{4}\pi}^{\frac{3}{4}\pi} \frac{1}{2} a^2 (\sqrt{2} + 2\cos\theta)^2 d\theta$		For integral of $(\sqrt{2} + 2\cos\theta)^2$
	3	A1	For a correct integral expression including limits (may be implied by later work)
	$= \int_{-\frac{3}{4}\pi}^{\frac{3}{4}\pi} a^2 (1 + 2\sqrt{2}\cos\theta + 1 + \cos 2\theta) d\theta$	B1	Using $2\cos^2\theta = 1 + \cos 2\theta$
	$J - \frac{\omega}{4}\pi$	וטו	
	$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$		
	$= \left[a^2 (2\theta + 2\sqrt{2}\sin\theta + \frac{1}{2}\sin 2\theta) \right]_{-\frac{3}{\pi}}^{\frac{2}{4}\pi}$	B1B1 ft	Integration of $\cos \theta$ and $\cos 2\theta$
	$= 3(\pi + 1)a^2$		Evaluation using $\sin \frac{3}{4}\pi = (\pm)\frac{1}{\sqrt{2}}$
	$=3(\pi+1)a$	M1 A1	$\sqrt{2}$
		7	
(b)(i)	$f'(x) = \sec^2(\frac{1}{4}\pi + x)$	D4	
(5)(.)	4	B1	Any correct form
	$f''(x) = 2\sec^2(\frac{1}{4}\pi + x)\tan(\frac{1}{4}\pi + x)$	B1	
	f(0) = 1, f'(0) = 2, f''(0) = 4	M1	Evaluating f'(0) or f"(0)
	$f(x) = 1 + 2x + 2x^2 + \dots$	B1A1A1	
		6	
	OR $g'(u) = \sec^2 u$ (where $g(u) = \tan u$) B1		Condone $\sec^2 x$ etc
	$g''(u) = \sec^2 u \tan u$ B1 $g''(u) = 2\sec^2 u \tan u$ B1		Condone sec x etc
			Evoluting (1/1 -)
			Evaluating $g'(\frac{1}{4}\pi)$ or $g''(\frac{1}{4}\pi)$
	$f(x) = g(\frac{1}{4}\pi + x) = 1 + 2x + 2x^2 + \dots$ B1A1A1		
(ii)	$\int_{-h}^{h} x^2 (1 + 2x + 2x^2 +) dx$		
		M1	Using series and integrating
	$= \left[\frac{1}{3}x^3 + \frac{1}{2}x^4 + \frac{2}{5}x^5 + \dots \right]_{-h}^{h}$	A1 ft	(ft requires three non-zero
	$\approx (\frac{1}{3}h^3 + \frac{1}{2}h^4 + \frac{2}{5}h^5) - (-\frac{1}{3}h^3 + \frac{1}{2}h^4 - \frac{2}{5}h^5)$		terms)
	$= \frac{2}{3}h^3 + \frac{4}{5}h^5$	A1 (ag)	
		3	Correctly shown
			Allow ft from $1 + kx + 2x^2$ with
			$k \neq 0$

2 (a)(i)	$z^{n} + \frac{1}{z^{n}} = 2\cos n\theta, z^{n} - \frac{1}{z^{n}} = 2j\sin n\theta$	B1B1	2	
(ii)	$\left(z - \frac{1}{z}\right)^4 \left(z + \frac{1}{z}\right)^2 = 64\sin^4\theta\cos^2\theta$	B1		
	$= z^{6} - 2z^{4} - z^{2} + 4 - \frac{1}{z^{2}} - \frac{2}{z^{4}} + \frac{1}{z^{6}}$	M1 A1 M1		Expansion $z^6 + + z^{-6}$ Using $z^n + \frac{1}{z^n} = 2\cos n\theta$ with
	$= 2\cos 6\theta - 4\cos 4\theta - 2\cos 2\theta + 4$ $\sin^4 \theta \cos^2 \theta = \frac{1}{32}\cos 6\theta - \frac{1}{16}\cos 4\theta - \frac{1}{32}\cos 2\theta + \frac{1}{16}$ $(A = \frac{1}{32}, B = -\frac{1}{16}, C = -\frac{1}{32}, D = \frac{1}{16})$	A1 ft	6	n = 2, 4 or 6. Allow M1 if used in partial expansion, or if 2 omitted, etc
(b)(i)	$ 4+4j = \sqrt{32}$, $arg(4+4j) = \frac{1}{4}\pi$	B1B1	2	Accept 5.7; 0.79, 45°
(ii)	$r = \sqrt{2}$ $\theta = -\frac{3}{4}\pi, -\frac{7}{20}\pi, \frac{1}{20}\pi, \frac{9}{20}\pi, \frac{17}{20}\pi$	B1 B3	6	Accept $32^{\frac{1}{10}}$, 1.4 , $\sqrt[5]{4\sqrt{2}}$ etc Accept -2.4 , -1.1 , 0.16 , 1.4 , 2.7 Give B2 for three correct Give B1 for one correct Deduct 1 mark (maximum) if degrees used $(-135^{\circ}$, -63° , 9° , 81° , 153°) $\frac{1}{20}\pi + \frac{2}{5}k\pi$ earns B2; with k = -2, -1 , 0 , 1 , 2 earns B3 Give B1 for four points correct, or B1 ft for five points
(iii)	$\sqrt{2}e^{-\frac{3}{4}\pi j} = \sqrt{2}\left(-\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}j\right)$	M1		Exact evaluation of a fifth root
	=-1-j $p=-1, q=-1$	A1	2	Give B2 for correct answer stated or obtained by any other method

		-			
3 (i)	$\mathbf{M}^{-1} = \frac{1}{5-k} \begin{pmatrix} 1 & 5k-13 & 5-2k \\ 1 & 52-8k & 3k-20 \\ -1 & -12 & 5 \end{pmatrix}$		M1 A1 M1 A1 M1		Evaluating determinant For $(5-k)$ must be simplified Finding at least four cofactors At least 6 signed cofactors correct Transposing matrix of cofactors and dividing by determinant
				6	Fully correct
	OR Elementary row operations applied to (LHS) and I (RHS), and obtaining at least two zeros in LHS Obtaining one row in LHS consisting of tw	M1			or elementary column operations
	zeros and a multiple of $(5-k)$	A1			
	Obtaining one row in RHS which is a mult of a row of the inverse matrix	A1			
	Obtaining two zeros in every row in LHS				
(::\		1A1	N 1 4		Cubatituting 1 7 into inverse
(ii)	$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = -\frac{1}{2} \begin{bmatrix} 1 & 22 & -9 \\ 1 & -4 & 1 \\ -1 & -12 & 5 \end{bmatrix} \begin{bmatrix} 12 \\ m \\ 0 \end{bmatrix}$		M1		Substituting $k = 7$ into inverse
	$\begin{bmatrix} y \\ z \end{bmatrix}^{-\frac{1}{2}} \begin{bmatrix} 1 & -4 & 1 \\ -1 & -12 & 5 \end{bmatrix} \begin{bmatrix} m \\ 0 \end{bmatrix}$		M1		Correct use of inverse
			M1		Evaluating matrix product
	x = -11m - 6, $y = 2m - 6$, $z = 6m + 6$		A2 ft	5	Give A1 ft for one correct Accept unsimplified forms or solution left in matrix form
	OR e.g. eliminating x,				
	3y - z = -24	M2			Eliminating and variable in two
	5y - z = 4m - 36	1414			Eliminating one variable in two different ways
	y = 2m - 6	M1			Obtaining one of x , y , z Give M3 for any other valid method leading to one of x , y ,
	x = -11m - 6, $y = 2m - 6$, $z = 6m + 6$	A2			z in terms of m
					Give A1 for one correct
(iii)	Eliminating x , $3y + 3z = -24$		M2		Eliminating one variable in two different ways
	5y + 5z = 4p - 36		A1		Two correct equations
	For solutions, $4p - 36 = -24 \times \frac{5}{3}$		M1		Dependent on previous M2
	OR Replacing one column of matrix with column				
	from RHS, and evaluating determinant	M2			
	determinant $12+12p$ or $-12-12p$	A1			Demondant
	For solutions, det = 0	M1			Dependent on previous M2

OR Any other method leading to an from which <i>p</i> could be found Correct equation	equation M3 A1		
$p = -1$ Let $z = \lambda$, $x = 5 - \lambda$, $y = -8 - \lambda$, $z = \lambda$		A1 M1 (or M3)	Obtaining a line of solutions Give M3 when M0 for findin or $x=13+\lambda$, $y=\lambda$, $z=-8-\alpha$ or $x=\lambda$, $y=-13+\lambda$, $z=5-\alpha$ Accept $x=5-z$, $y=-8-z$ or $x=y+13=5-z$ etc

		ı	1
4 (i)	$1 + 2\sinh^2 x = 1 + 2\left[\frac{1}{2}(e^x - e^{-x})\right]^2$		
	$=1+\frac{1}{2}(e^{2x}-2+e^{-2x})$	B1	For $(e^x - e^{-x})^2 = e^{2x} - 2 + e^{-2x}$
	$= \frac{1}{2} (e^{2x} + e^{-2x})$	B1	For $\cosh 2x = \frac{1}{2} (e^{2x} + e^{-2x})$
	$=\cosh 2x$	B1 (ag)	For completion
		3	·
(ii)	$2(1 + 2\sinh^2 x) + \sinh x = 5$	M1	Using (i)
	$4\sinh^2 x + \sinh x - 3 = 0$		
	$(4\sinh x - 3)(\sinh x + 1) = 0$	M1	Solving to obtain a value of
	$\sinh x = \frac{3}{4} , -1$	A1A1	sinh x
	$x = \operatorname{arsinh}(\frac{3}{4}) = \ln(\frac{3}{4} + \sqrt{\frac{9}{16} + 1}) = \ln 2$	A1 ft	
	$x = \operatorname{arsinh}(-1) = \ln(-1 + \sqrt{1+1}) = \ln(\sqrt{2} - 1)$	A1 ft	_
		6	or $-\ln(\sqrt{2}+1)$
			SR Give A1 for
			$\pm \ln 2, \ \pm \ln(\sqrt{2} - 1)$
	OR $2e^{4x} + e^{3x} - 10e^{2x} - e^x + 2 = 0$		
	M2 $(e^x - 2)(2e^x + 1)(e^{2x} + 2e^x - 1) = 0$ A1A1		Obtaining a linear or quadratic factor
			For $(e^x - 2)$ and $(e^{2x} + 2e^x - 1)$
	$x = \ln 2, \ \ln(\sqrt{2} - 1)$ A1A1 ft		, , ,
(iii)	$\int_{0}^{\ln 3} \frac{1}{2} (\cosh 2x - 1) \mathrm{d}x$	M1	Expressing in integrable form $ \begin{array}{ccccccccccccccccccccccccccccccccccc$
	J 0		or $\int \frac{1}{4} (e^{2x} - 2 + e^{-2x}) dx$
	$= \left[\frac{1}{4} \sinh 2x - \frac{1}{2} x \right]_0^{\ln 3}$	A1A1	or $(\frac{1}{8}e^{2x} - \frac{1}{8}e^{-2x}) - \frac{1}{2}x$
		AIAI	8 2 2 2
	$= \frac{1}{8} \left(9 - \frac{1}{9} \right) - \frac{1}{2} \ln 3$	M1	For $e^{2 \ln 3} = 9$ and $e^{-2 \ln 3} = \frac{1}{9}$
		1411	M0 for just stating $sinh(2 \ln 3) = \frac{40}{9}$
	$= \frac{10}{9} - \frac{1}{2} \ln 3$	A1 (ac)	etc
		A1 (ag) 5	
(iv)	Put $x = 3\cosh u$	M1	Any cosh substitution
	when $x = 3$, $u = 0$		Fan 1 0 Mat average of face
	when $x = 5$, $u = \operatorname{arcosh} \frac{5}{3} = \ln 3$	B1	For $\ln 3$ Not awarded for $\operatorname{arcosh} \frac{5}{3}$
	$\int_{3}^{5} \sqrt{x^2 - 9} dx = \int_{0}^{\ln 3} (3 \sinh u)(3 \sinh u du)$	A1	3
		, , ,	Limits not required
	$=9\int_{0}^{\ln 3} \sinh^2 u du$		
	$= 10 - \frac{9}{2} \ln 3$		
	2	A1 4	

		T	
5 (i)		B2	At least two cusps clearly shown Give B1 for at least two arches
	Has cusps Periodic / Symmetrical in <i>y</i> -axis / Has maxima / Is never below the <i>x</i> -axis	B1 B1 4	Any other feature
(ii)		B2	At least two minima (zero gradient) clearly shown Give B1 for general shape correct (at least two cycles)
	The curve has no cusps	B1 3	For description of any difference
(iii)	(A)		
		B2 2	At least two loops Give B1 for general shape correct (at least one cycle)
	(B)	M1	Correct method of differentiation Allow M1 if inverted
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\sin\theta}{1 - 2\cos\theta}$	A1 2	Allow $\frac{\sin \theta}{1 - k \cos \theta}$
	(C) $\frac{dy}{dx} \text{ is infinite when } 1 - 2\cos\theta = 0$	M1	
	$\theta = \frac{1}{3}\pi$	A1	Any correct value of θ
	$x = \frac{1}{3}\pi - 2\sin\frac{1}{3}\pi$ $= -(\sqrt{3} - \frac{1}{3}\pi)$	M1	
	Hence width of loop is $2(\sqrt{3} - \frac{1}{3}\pi)$	M1	Finding width of loop
	$=2\sqrt{3}-\frac{2\pi}{3}$	A1 (ag) 5	Correctly obtained Condone negative answer
(iv)	<i>k</i> = 4.6	B2 2	Give B1 for a value between 4 and 5 (inclusive)